
Ritwik Takkar
10/04/22

Paper Report:
ghOSt: Fast & Flexible User-Space

Delegation of Linux Scheduling by Jack
Tigar Humphries et al.

ritwiktakkar.com

1 Summary

It is hard to appreciate this paper without understanding problems with existing kernel
schedulers in Linux: namely, kernel programming is tough especially in terms of custo-
mizing policies based on new workloads/hardware, upgrading production machines is
time-consuming, and only allows you to make per-CPU policies. The ghOSt Linux kernel
scheduling framework is the authors’ solution to these issues. It builds upon previous rese-
arch by providing the ability to: delegate decisions to userspace, run scheduling policies in
userspace processes, and allow fast abstractions, support variety of scheduling policies, and
upgrade production machines efficiently (seconds vs hours).

2 Strengths of the paper

Given how low level kernel programming is, I never considered that there could be an
API, like what ghOSt provides, which lets users customize their scheduler based on system
preferences directly from userspace. Offering users this level of granular control no doubt
liberates them in a way that allows them to further tinker with their systems in a manner
that was previously considered infeasible.
I liked the clear evaluation criteria consisting of three questions that the authors used to
evaluate ghOSt. The questions served to convey the most reasonable metrics for possible
adopters to consider using ghOSt: a overheads specific to ghOSt; b comparison to prior
work, like Shinjuku; and c evaluating the viability of ghOSt for large-scale and low-latency
workloads like Google Snap, Google Search, and virtual machines.
I was surprised to see Google Search being used as a test bed for ghOSt in that the authors
replaced the CFS scheduler on machines with it. It is impressive that they managed to
reduce tail latency by 40-45% while maintaining throughput when using ghOSt for CPU and
memory-intensive queries, as well as queries that access the SSD serviced by a collection of
short-lived workers.

3 Weakness of the paper

This was perhaps the most technically dense paper of the semester so far. While the authors
outlined the issues prevalent in classic schedulers as motivation to design ghOSt, I wish
there was a figure that visually portrayed the difference between ghOSt and its traditional
counterpart. A visual figure detailing this comparison would be especially useful for a reader
like me in §3: Design.

4 Future work opportunities

Integrating the CPU and I/O schedulers1 will likely yield even more performance gains, but
doing so is tough - my lack of in-depth scheduler knowledge prevents me from concisely
explaining why, but for starters, if it wasn’t hard I’m sure the authors would have done it
already. . .

1SOSP 2021 QA: Session 13: Scheduling: GhOSt: Fast Flexible User-Space Delegation of Linux ..., 2021.
https://www.youtube.com/watch?v=AOPdm4y080.

1


	Summary
	Strengths of the paper
	Weakness of the paper
	Future work opportunities

